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Abstract—Benchmark solutions to nontrivial radiation transport problems are
crucial to the validation of transport codes. This paper gives an analytical
transport solution for non-equilibrium radiative transfer in an infinite and
isotropically scattering medium. The radiation source in the medium is iso-
tropic in angle and constant in time (but only exists in a finite period of time),
and is allowed to be uniformly distributed in a finite space or to be located at a
point. The solution is constructed by applying the Fourier transform with
respect to spatial variable and the Laplace transform with respect to temporal
variable. The integration over angular variable is treated exactly. The resulting
solution, as a function of space and time and in the form of a double integral,
is evaluated numerically without much difficulty. Tables and figures are given
for the resulting benchmark solution. Published by Elsevier Science Ltd.

INTRODUCTION

Radiative transfer problems, especially time-dependent ones, are generally very complex
and have to be solved numerically. Many computer codes, employing different num-
erical algorithms and techniques, exist in the engineering and scientific community.
For quantitative confirmation of the numerical schemes used in codes, it is desirable to
have analytical benchmarks to which numerical solutions can be compared. In the context
used here, an analytical benchmark means a solution representation to a radiative transfer
problem for which an accurate numerical evaluation can be performed. Few analytical
benchmarks exist in the field of non-equilibrium radiative transfer, and effort has been
directed toward this aspect. Particularly, the non-equilibrium Marshak wave problem
(Marshak, 1958), where an initially cold, semi-infinite, purely absorbing, and homo-
geneous medium is irradiated isotropically at the free surface, has received considerable
attention. The full Marshak wave problem is nonlinear and is, therefore, mathematically
intractable. Yet with several simplifying assumptions on material properties (Pomraning,
1979), it has been linearized and thus analyzed. Specifically, this problem has been
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considered in the diffusion and spherical harmonic (P-1 and P-2) approximations, and
the analytical solutions were obtained for the radiation and temperature fields at the free
surface and for the radiation and material energy contents as functions of time (Pomran-
ing, 1979; Pomraning and Shokair, 1981), as well as for the full radiation and temperature
fields in the interior of the medium as functions of space and time (Pomraning, 1979; Su
and Olson, 1996). In the transport description, Ganapol and Pomraning (1983) solved the
problem using a multiple-collision approach motivated on physical grounds. After quite
intensive analyses, they obtained the transport solutions for the radiation and temperature
fields at the free surface and for the radiation and material energy contents, in the form of
an infinite series of integrals. Such solutions were evaluated numerically by standard
numerical techniques. However, they did not derive the solution for the distribution of
radiation and temperature fields in the medium. Therefore, no benchmark transport
results are available for the full solution to the non-equilibrium radiative transfer problem.
One certainly could follow this multiple-collision approach (Ganapol and Pomraning,
1983) to derive the full solution in the interior of the medium.! However, the analysis and
numerical evaluation of the solution obtained in this way would not be easy for those not
familiar with the multiple collision approach.

Considering the need for benchmark transport results of radiation and temperature
fields in the interior of a medium, we solve a different and mathematically simpler non-
equilibrium radiative transfer problem than the foregoing Marshak wave problem in this
paper. This problem corresponds to an initially cold, homogeneous, infinite, and iso-
tropically scattering medium with an internal radiation source. The source is isotropic in
angle, is restricted to be constant in time but only exists for a finite period of time, and is
allowed to be uniformly distributed in a finite space or located at a point. For this pro-
blem, we can derive the full solution, as a function of space and time, in a straightforward
way by using the Fourier transform with respect to spatial variable and the Laplace
transform with respect to temporal variable. This method makes the exact treatment of
integration over angular variable possible and yields the solution in a form of double
integral. Based on this solution, analytical benchmark transport results for non-equili-
brium radiative transfer are generated without difficulty.

THE PROBLEM

We consider a basic non-equilibrium radiative transfer problem, corresponding to an
initially cold, homogeneous, infinite, and isotropically scattering medium with an internal
radiation source in it. The coupled radiation transport and material balance equations in
one dimensional plane geometry for this problem, neglecting hydrodynamic metion and
heat conduction, are

(1 9 + ,ua—az> Iz, t) = ka(T) BaT“(:, 1) — Iz, u, t)}
- (1a)
+ ks(7T) [5/] dp'f(z, 1/, 1) — I(z, u, i)] +S(z, 1, 1),

Tt was brought to our attention by the referee that such an attempt has already been done and
numerical results exist but have not been published.
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lcV(T)aT(Z

c ot

1
D (m) [/. d'l(z, w', 1) = aT(z 1), (1b)

where z is the spatial variable (—oo < z < 00); u is the cosine of the photon direction
measured with respect to the z axis; ¢ is the temporal variable (—co < t < o0); I is the
photon intensity; 7 is the local material temperature; S is the radiation source; «, is the
absorption cross section (opacity) of material; «, is the scattering cross section of material;
¢y is the heat capacity of material; a is the radiation constant; ¢ is the speed of light.

For a general temperature dependence of «,, ks, and ¢, the two equations are nonlinear
and thus mathematically intractable. However, if we assume that «, and «, are constants
(independent of temperature) and that ¢, is proportional to the cube of the temperature
(Pomraning, 1979), i.e.

Cy =aT?,

then equations (1) become linear in 7 and T#. As described previously (Pomraning, 1979),
the sole purpose of these assumptions on material properties is to relax the physical con-
tent of the problem such that a detailed analytical solution can be obtained and thus
provide a useful test problem for radiative transfer codes, since those codes are meant to
handle an arbitrary temperature dependence of the material properties. The linearized
equations can be rewritten as

0 ad Ca Cs
a_ " - = ry 3 ) 2
<8ar+“ax+ l) Ulx, u, 1) > Vix, 1) + 5 W(x, t)+ Q(x,u, 1) (2a)
Vi
5’% = & [W(x, T) — V(x. 1), (2b)
where
4q Ka Ks
K=Ky + Ky, XZ=KZI, E=—, TZECKI, CQ=—, C=—,
o K K
Iz, 1, 1) _[T(z, 1) 4
U(x, M, T) = —a‘T‘HA— s V(x, 1') = [ TH N

1
Sz, 1, ¢
W(x. 1) = / AUl r), Q) g,
- H

il

with Ty being the Hohlraum temperature (or any reference temperature). In equations
(2), x and t are the scaled spatial and temporal variables; and U, W, V, and Q are the
scaled radiation intensity, radiation energy density, material energy density, and radia-
tion source, respectively. The material properties are represented by c,, ¢s, and €, with
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¢a + ¢s = 1 and ¢ being an arbitrary constant. The boundary and initial conditions on
equations (2a) and (2b) are

lim U(x,u,t})=0;, Ulx.pu,1)=V(x,1)=0, t<0. (2¢)

x—toc

These conditions imply that the material is initially cold (temperature equals to zero) and
suffers no irradiation before the primary source Q(x,u,7) is turned on at t = 0. We spe-
cifically consider, in this paper, a unit radiation source which is constant in time but only
exists in a finite period of time (0 < t < 1), isotropically distributed in angle, and uni-
formly distributed in a finite space (~xg < x < xp), i.e.

O(x. 1) = 3 Q1(3)0: (o). o)
with

O\ (x) [6(x + x0) — 8(x — xp)],

:zx;

0a(1) =6(7) — 6(r — ).

Here 6 is the Heaviside (unit step) function. As xy approaches zero, we have

lim Q;(x) = §(x).

X0 —0

That is, the source represented by Q)(x) becomes a plane source located at x = 0 when
setting xo = 0. The reason that we do not take Q,(x) as a delta function directly is to
avoid the possible difficulty of simulating a delta function numerically in real codes. Also,
we keep the source on for only a limited period of time. Because if 7y was taken as oc,
then for the equilibrium state at large , the equation for radiation would become [see
equations (2a) and (2b)]

a a | 1
(eg + i + 1) Ulx,u, 1) = 3 Wi(x, 1) +§Q1(x)0(r),
which has no finite steady-state solution since it represents a situation with a constant
source but no absorption (Case er al., 1953).

It should be pointed out that the whole space problem we just described can actually be
treated as a half-space problem. Because the source is isotropically distributed in angle
and located symmetrically around x = 0, the problem we are considering has symmetry
with respect to the x axis. Consequently, there is no net energy flux at x = 0. Therefore,
this full-space problem is equivalent to the half-space problem defined still by equations
(2) and (3), but only for 0 < x < oo and with a reflective boundary condition at x = 0
given by

U0, u, ) = U0, —pu, 7).
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The mathematical objective for equations (2) is to derive the analytical solutions for
W(x,7) and V(x,7). From equation (2b) and the initial condition given by equation (2c), it
1s deduced that

Vix,t —cd/ dr’ e ) wix, o). 4)
Using equations (3) and (4) in equation (2a) yields the closed equation for U(x,u,7)

) i) _ Ci ' ! a—ca(t—1') !
(83t+“3x+l)u(x'“’r)_?/0 dr'e Wi(x,t')
(5a)
¢ 1
+3 W(x. 1) + 31 (x)Qa(7).

The appropriate limiting conditions at x — *oc and the initial condition for equation (5a)
are

lim U(x,u,7)=U(x,u, Tt <0)=0. (5b)

X—toc

We let ¥(x,u,7) denote the solution to the auxiliary problem of equations (5), corre-
sponding to an impulsed source at = 0, given by

0
(e%ﬁ—ua-{—l) vix, w1 /dr/ e ) p(x, 1) .
+2P(X )+ Ql( )8(z),

lim ¥(x, 1, 1) = ¥(x,u, t <0) =0, (6b)

X—+oC

where

1
p(x, T) :[ duy(x, i1, 7).

1
Then U(x,u,r) can be expressed as [see Ganapol (1979) and Ganapol and Pomraning
(1983) for the relationship between the solution corresponding to an impulsed boundary

condition/source at T = 0 and that corresponding to a continuously incident boundary
condition/source]

Ulx, u»r)=/ dr’ yx, . 1),
or, after integrating over u, W(x,z) is given by

Wix, 1) = /‘r dt' p(x, 7). (7)
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where
" = max|[0, (t — 1))
Besides the radiation and material energy densities denoted by W(x,7) and V(x, 1),

other physically interesting quantities are the radiation and material energy contents of
the infinite medium defined as

oe(7) = /Aoo dxW(x, 1), (1) = /:: dxV(x, 7).

oo

Integrating equations (7) and (4) over x leads to

01) = [ ar'a(e) Q
om(T) = ca /Tdr' e " g (7). 9)
0
In equation (8), we have used
#() = [ dnotx. ). (10)

Obviously, we need p(x,7) and ¢(7) to compute W(x,7), V(x, 1), ¢:(1), and ¢ (7).

SOLUTION TO THE PROBLEM

It is usually a normal approach to derive solutions to different transport problems
(either time-independent or time-dependent) in infinite medium with sources by applying
the method of Case (Case, 1960; Case and Zweifel, 1967). However, using the Case
method to solve the non-equilibrium problem described in the previous section would be
complicated and would end up with the solutions for W(x,r) and ¥(x,7) in the form of
triple integrals, which make numerical evaluation very difficult and expensive. An alter-
native approach was suggested by Papmehl (1966) and he demonstrated that in a time-
dependent neutron transport context [without the first term in the right hand side of
equation (6a)], a solution can be constructed in a simple manner by using a double
Fourier transform with respect to both temporal and spatial variables. However, applying
the Fourier transform in the temporal variable to problems with initial conditions at T <
0, such as equations (6), may be invalid. For some problems, such treatment yields wrong
solutions. In his work, Papmehl actually did not prove the validity of applying the Fourier
transform in the time variable, that is bounded for T > 0, to his problem. Here, we use a
slightly different method than Papmehl’s to treat our problem: we apply the Fourier
transform with respect to the unbounded spatial variable and apply the Laplace transform
with respect to the bounded temporal variable to obtain the solutions for p(x, t) and ¢(7).
Specifically, we introduce the double transform according to

1k, s) :/030 dre""/_x dxe ™ * f (x, 1) (11)
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to equations (6). Here s is a complex variable and £ is a real variable. Multiplying equa-
tion (6a) by exp[-(ikx + st)], integrating over x and t (interchanging integration orders of
7 and t’ for the first right hand side term), and using equation (6b) yields

2

_ 1 : _ 1
(1 +es+ ipkyp(k, u,s) = 3 [(Cacjr 5 + Cs} plk,s) + EQ](k)a (12)
where
; sin (kxq)
x _ Sin (kxo) 0,
0,(k) = / dxe ™ Qi(x) = kxo o7
o 1, xo=0

Note that xo = 0 implies that Q;(x) is a delta function, as discussed in the previous sec-

tion. Dividing equation (12) by (I + es + iuk), integrating over u from -1 to 1, and
solving for p(k,s) (using ¢, + ¢; = 1), we obtain

_  (cat5)blk,$)Q, (k)
plk,s) = [(ca +5) — b(k. s)(c: + o)) (13)

with b(k,s) being defined as

R ! du

The function ¢(7), defined by equation (10), can be found very easily by setting & = 0 in
the transform equation for p(x,t). Based on equations (11) and (10), we have

2(0,5) = /x dre™ /OO dxp(x, 1) = /OC dre " ¢(7).
0 - 0

oG

(15)

This equation states that the Laplace transform (in 1) of ¢(z) simply equals p(0,s). Then,
@(7) is given by the Laplace inverse transform of 5(0,s). Setting k = 0 in equation (13)
gives

_ 3+ S 1 1
PO, 5) =

[es+ca(l+6)] (1 +£)s+

e(1+e)s+ca(l +8)/e]

Thus, inverting 5(0,s) back to the r domain, we obtain

_ 1 1 ~ca{l4e)T/e
¢(r)h(l+e)+8(l+5)e /e (16)

We see that ¢(r) has a very simple expression and is independent of the spatial dis-
tribution of the source (xp). One could prove easily that this result is also true for any
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anisotropic (in angle) source. Physically, this means that no matter where and in which
direction the impulsed source is, it yields a same energy content throughout the infinite
medium.

To obtain the solution for p(x,t), we first consider the Laplace inversion of p(k,s) and
have

2mi

,O(k, ) 1 /(:ds [( (('a"‘s)b(k,S)Ql(k)esz (17)

- ca +5) = b(k.5)(ca + ¢s5)]

where the integration contour C is a line parallel to the imaginary s axis to the right of all
the singularities of the integrand. For a fixed and real parameter &, the poles of the inte-
grand are the roots of the equation given by

b(k,s): Ca"‘*S :l+ CaS ' (18)
Ca t+ Cs8 Ca + Cs8

We cannot find the roots of equation (18) explicitly. However, we can prove that the roots
are in the left half space of s, i.e. Re(s*) < 0, where s* are the roots of equation (18).
Because, if Re(s*) > 0, the modulus of the right hand side of equation (18) is obviously
greater than unity and the modulus of the left hand side of the equation is smaller than
unity according to equation (14). This makes the equality impossible. Thus, no poles exist
in the right half space of 5. In addition to these poles, the integrand also has two branch
cuts, due to b(k,s), in the left half space of s, with branch points at s = (1 £ ik)/e. We,
therefore, conclude that there are no singularities in the right half s-plane because the
Fourier transform is applied to the spatial variable. This fact is quite different from other
similar analyses for related problems, such as that given by KusCer and Zweifel (1965),
where the spatial variable is treated differently. Since all the singularities of the integrand
are in the left half space of s, the integration contour C in equation (17) is then taken as
the imaginary axis of s and the integration variables are changed accordingly from s to iw,
with  being a real variable. We thus have

LR (et iw)blk, )0, (k) e
Mkﬂ—i;/m“mQ+m»thx;+wwﬂ’ "
where now
— 1 I du
bk, w) ~§/J [1+ i(cw + pk)] o

After the Fourier inversion of equation (19) with respect to the variable k, p(x,7) is given
by

LR (et iw)blk, )0, (k) ekrren
e B BT e oo e M)
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In fact, equation (21) could have been obtained directly by applying the double Fourier
transform (from x and 7 to & and w) to equation (6a), solving for p, and using the Fourier
inversion theorem, just as what Papmehl did to the neutron transport equation (Papmehl,
1966). Yet the validity of using the double Fourier transform method to our problem
would then have not been clear. For the problem under consideration, the Fourier trans-
form in 7 is equivalent to the Laplace transform in 7 simply because that the integration
contour in the Laplace inversion can be taken as the pure imaginary axis. Thus, using the
double Fourier transform method directly is valid. However, not all time-dependent pro-
blems with initial conditions share this property.

It is very unlikely to perform the double integral given in equation (21) analytically due
to the existence of b(k,w). Accordingly, we explicitly manipulate equation (21) into an
expression that is suitable to be calculated numerically. Performing the integration given
by equation (20) yields

bk, w) = pk, ») — iglk, w). (22)
where
1! du 1
k, = = _— = — ¢ ]k+ +t <1k* s (23a
Pl =3 [ gl ko ban ), (%)
I 1 (ew + pk)dp 1 i 2ewk
P L ek ) 23b
skl 2[-11+(£w+uk)2 o () 230

Inserting equation (22) in equation (21) and separating the real and imaginary parts, we
have

1
(2m)?

plx,7) = / Lk / " dwlh(k, ) — iglk, w)] elkror (24)

in which we have defined

hikw) = 28 2 (2 ety + ) (250)
glh.0) = S (& + o)y + Gols? + 7). (25)

and
rik, w) = (2 + ) (P + ¢°) + 2¢2wq — 2(2 + cs)p + & + . (25¢)

Expanding the exponential term in equation (24) as

ez(k.\'+wr)

= cos (kx + wt) + isin (kx + wr)
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leads to

plx, 1) = ﬁ/—i dk/_: dw [cos (kx + 1) - A(k, ) + sin (kx + o7) - g(k, »))]
(26)
+ (er?/_z dk /Z do [sin (kx + wt) - h(k, w) — cos (kx + wt) - glk, ®)].

Equation (26) is the expression for p(x, t), with real and imaginary parts being sepa-
rated. Based on physical consideration, the imaginary part should be equal to zero. It is
easy to show that this is the case. If a function flk,w) is symmetric with respect to the
origin of coordinates, the following rule applies

[ wr-

0, if f(—k, —w) = —f(k,w) or odd symmetry,

2/ dk/ dw f(k, w), if f(—k,w)=f(k,w) or even symmetry.
0 —oc

It is easy to verify that A(k, w) and cos(kx + wrt) have even symmetry, whereas g(k, w) and
sin(kx + wt) have odd symmetry, with respect to the origin. These lead to the result that

_both the imaginary terms of the integrand in equation (26) are odd functions, and both
the real terms are even functions, with respect to the origin. Then, according to the fore-
going rule, equation (26) reduces to

! /x dk /OC dw [cos (kx + wt) - h(k, ) + sin (kx + wt) - gk, @)].  (27)
0 —00

plx, 1) = 2

This result can be further simplified. From equations (23) and (25). we see that p, g, 7, A,
and g are also symmetric with respect to the w axis. Specifically, p, r, and & are even
functions in w, and ¢ and g are odd functions in w. After expanding the trigonometric
functions in equation (27) as

cos (kx + wt) = cos (kx) cos (wt) — sin (kx) sin (wt),
sin (kx + wt) = sin (kx) cos (wt) + cos (kx) sin (w7),
the odd terms in @ of the integrand, that contribute zero to the integration over w from

—o0 to 0o, are deleted. For the remaining even terms in w, the integration range of @ can
be reduced to a half-space, thus equation (27) becomes

olx, 1) = %/Ox dk /DOC dwcos (kx)[h(k, w) cos (w7) + g(k, ) sin (w7)]. (28)
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Equation (28) is the solution, in the form of a double integral, to equations (6) which
correspond to an impulsed source at r = 0. As expected, this result is symmetric with
respect to x axis since the source is isotropic in angle and located symmetrically around x
= 0. The double integral in equation (28) cannot be done analytically. However, its inte-
gration over x has a very simple expression given by equation (16).

With ¢(7) and p(x,7) obtained, it is easy to construct the solution to the problem. We
first consider the total energy contents in the infinite medium. Inserting equation (16) in
equation (8), then inserting the resulting solution for ¢; in equation (9), and carrying out
the algebra, we obtain the radiation and material energy contents to be

T 1
+ [1 _ efca(l-o—e)r/s] i 7 < 19,
(I+e) co(1+¢) °
#e(t) = (29)
To 1

+ |:eAm(l+e)(r—to)/s _ e~ra(l+e)r/s} , > 1,
(I+e) c(1+¢)?

T £
- 1 — e*"”““)’/e}, 7 < 10,
(I+¢) ca(l+£)2[ =
¢m(7) = (30)
Ty &

. e~ca(1+5)(rfro)/s _ e~r‘,(1+s)r/e]’ > 1.
(I+e) ca(14¢) [

These results are actually independent of the spatial and angular distribution of the
internal source. Therefore, equations (29) and (30) are valid for any arbitrary source as
long as the total source strength is one. Also, it is found, from equations (29) and (30),
that ¢,(7) and ¢n (1) satisfy

1, 1< 71,
ep (1) + (1) = (31)

70, T > 1.

We see that the sum of the energy contents increases linearly with r when the source is on
and is constant after the source is turned off.

Similarly, using equation (28) in equation (7) and then using the result in equation (4)
yields the following solutions for the radiation and material energy densities in the
medium, as functions of space and time,

1

W(X, 'L’) = ;

/x dk/x de{h-sin (wt) +g-[1 —cos(wt)]}, T<10, (32a)
0 0 w

Wi(x, 1) = %/ﬂx dk /:C dw coscikx) {h - [sin (wt) — sinw(t — 10)]

(32b)

+g- [COSG)(T — 1.'0) — COS (a)f)]}, T > Ty,
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_ > > cos (kx) .
Vix,r) = W(x, 1) — —/0 dk/0 dw W {(wh + ¢,g) - sin (w7) (33a)

+ (cah — wg) - [cos (wT) — e 7]}, T < 1,

Vix,7) = W(x, 1) — %/OOC dk /Ox dw % {{wh + cag) - [sin (@1) — sinw(t — 1)]

+(cah — wg) - [cos (wT) — cosw(T — 19) + & TN _ewT} 1> g, (33b)

where 4 and g, as functions of k£ and w, are defined by equations (25). These solutions are
all in the form of double integrals and have to be evaluated numerically. The numerical
evaluation of these solutions is not exceptionally difficult, although not trivial. The details
of the numerical investigation of these solutions and the numerical results are given in a
later section.

ASYMPTOTIC APPROXIMATIONS

In this section, we consider the asymptotic approximations for the solutions. We first
derive the asymptotic solution for W(x, t) at large 7. Substituting equation (21) in equa-
tion (7), we have the exact expression for W(x, ) at t > 1o,

o LT [T g, Lot )bk, @)D (R (1 et
W(’)_(znf/-xdk[xd {(cmw)—b(k.w>(ca+icsw)1( P ) 34)

For large times (t > 1), the main contribution to the integral over w is due to the small
values of w. Hence, we can expand b(k,w) and the last term in equation (34) around w =
0. Neglecting quadratic and higher terms in w, we obtain [see equations (22) and (23)]

bk, ) =~ p,(k) — iwga(k), (35)

where

. £
1+ k2

(£> ~~ ro(l — 1i'row). (36)
iw 2

Using equations (35) and (36) in equation (34) and only keeping the linear terms in
(note here it is assumed that ¢, # 0 otherwise the quadratic terms should be kept) yields
the equation for the asymptotic solution, that is denoted by W,(x,7) here, given by

%o x ikx 7y * [capa + iw(pa — Caga — capaTo/2)] "
Wa(lx, 1) = ,/ dke k / dw . . (37
( ) (2” “J- Q]( ) —xc [Ca(l _pa) + m’(l + Caga — Cspa)] ( )

tan"'(k),  ga(k)

and

¢
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The integral of w can be evaluated analytically by a simple contour integration. As a
result, we have

/ dketkr_ k) a[l—To/ZPa'f‘ToPa/z‘*'Qa]C“’t

, (38)
(14 caga — Cspa)

where

* Ca(] _pd)
w = ————.
1 4 caga — CsPa

We see that w* = 0 at k = 0, thus the integrand of equation (38) is peaked at £ = 0 and
the main contribution to this inte&ral comes from small values of & when 1 is large
enough. Expanding p,, ¢., »*, and Q,(k) in terms of & as

1

I o |
pa = 1 —§k2, ga = €(1 — k%), a)*%mk‘, 0,(k) = l—gx(z)kz,

inserting these results in equation (38), and omitting higher than quadratic terms lead to

. TH o 2ﬁ .
i) = et |9 [ g oo [k ST N

where the parameter 8 is given by

3 1 1
‘3:_5*_4_9

2
2 ¢ 4 ki(l ek

Manipulating the integral in equation (39) explicitly yields the asymptotic time-space
distribution at large times as

Wa(x,r):—rﬂ\/%—; [1+QM] exp [_ﬂllﬂ] (40)

Equation (40) is the asymptotic approximation to equation (32b) at large times. Integra-
tion of equation (40) over x from —oo to oo gives

¢ra / d’CW x-' T (41)

-~

6)

which agrees with the leading term of the exact result given by equation (29) when 1 >> 7.
Following the same procedure or simply utilizing equation (40) in equation (4) [in which
W(x, ) at any T can be reasonably approximated by W,(x, ) due to the fact that the
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contribution to that integral at small 7 is negligible], one could also derive the asymptotic
approximation for V(x,r) at large times. However, such pursuit is unnecessary, since at
large times V(x,t) and W(x,t) are almost identical.

We next consider the small 7 approximations. Converting p(k,s) [given by equation
(13)] back to the x and t domains yields

. B (ca +5)b(k, 5)
plx,t)=F l{Ql (k)L™ |:(Ca +5) — bk, s)(ca + Css):| }’ .

where ! and £7' represent the inverse Fourier transform operator and the inverse
Laplace transform operator, respectively. Since small = corresponds to large s, we expand
b(k,s) defined by equation (14), at large s, as

1 .
b(k,s):%[ du{lA“_*#k)+..}:l_%+... (3)

1 s (e5)”

We then use equation (43) in equation (42) and further simplify the expression as

plx. 1) ~ FQ (KL [%l} —0\) [1 . —] (44)

(ES £ 62

Using this result in equations (7) and (4), we obtain the small 7 approximations for energy
densities, denoted here as Wy(x,7) and V(x,7),

2

Wi(x, 1) = Q) (x) [E Ca’}, Vi(x, 7) = 01(x) ["“"2], (45)

e 2¢ 2

with errors in the order of 7. It is easy to verify that the temporal behaviors of W(x,t)
and V,(x,7), after integration over x, agree with equations (29) and (30) up to the quadratic
terms for small z. This small T asymptotic solution, together with the large 7 asymptotic
solution, can be used to validate whatever numerical schemes that will be used to evaluate
the double integrals derived in the previous section by comparing numerical results with
the prediction of these asymptotic solutions. It should be noted that equation (45) is only
a preliminary approximation and it indicates that at very small times, the radiation and
material energy densities only depend upon the local source. The effect of streaming is
totally neglected because only the first two terms, that are independent of &, are kept in
the expansion of b(k,s). Neglecting the streaming effect is justifiable for spatial positions
well within the source region, where the spatial gradients of densities are very small.
However, this is not the case near the edges of the source region (note that the source is
uniformly distributed in —xy < x < x¢), where the spatial gradients of densities are huge
and thus the effect of streaming is important. Therefore, equation (45) is not valid near +
xo. To derive better small t approximations, one should keep higher terms to include the
variable k in the expansion of b(k,s) and treat the poles of the inverse Laplace transform
as functions of k. However, such treatment would prevent one from obtaining explicit
results in elementary functions.
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NUMERICAL RESULTS

The evaluation of the integrals in equations (32) and (33) proceeds in a manner very
similar to the process outlined in an earlier paper (Su and Olson, 1996). The w-k plane is
divided into areas whose sides are chosen to be multiples of #. Farther from the origin, as
the contribution to the integrals decreases, larger areas are chosen. Each area is evaluated
using the multiple integral method discussed in Section 4.6 of the book Numerical Recipes
in Fortran (Press et al., 1992). Each one-dimensional integral is evaluated with the open
Romberg method to a specified accuracy. However, when the inner one-dimensional
integrals are added to compute the two dimensional integral, the cancellation due to the
oscillation of the integrand causes the tolerances for the one-dimensional integrals to be
almost useless for quantifying the accuracy of final results. Therefore, we adopted the
conservative approach of tightening the error tolerances for the integrals in each area until
the final result for W and V at each evaluated point was converged to at least 1 x 1074,
That is, we required as a minimum that the first four digits after the decimal point were

Table 1. Radiation energy density, W(x,7), for the case with e=1, c,=1, o = 10, xo = 0.5. The
upper section is diffusion solution and the lower section is transport solution

x\t 0.10000 0.31623 1.00000 3.16228 10.0000 31.6228 100.000
0.01000 0.09403 0.24356 0.50359 0.95968 1.86585 0.66600 0.35365
0.10000 0.09326 0.24002 0.49716 0.95049 1.85424 0.66562 0.35360
0.17783 0.09128 0.23207 0.48302 0.93036 1.82889 0.66479 0.35347
0.31623 0.08230 0.20515 0.43743 0.86638 1.74866 0.66216 0.35309
0.45000 0.06086 0.15981 0.36656 0.76956 1.62824 0.65824 0.35252
0.50000 0.04766 0.13682 0.33271 0.72433 1.57237 0.65643 0.35225
0.56234 0.03171 0.10856 0.29029 0.66672 1.50024 0.65392 0.35188

0.75000 0.00755 0.05086 0.18879 0.51507 1.29758 0.64467 0.35051
1.00000 0.00064 0.01583 0.10150 0.35810 1.06011 0.62857 0.34809

1.33352 0.00244 0.04060 0.21309 0.79696 0.60098 0.34382
1.77828 0.01011 0.10047 0.52980 0.55504 0.33636
3.16228 0.00003 0.00634 0.12187 0.37660 0.30185
5.62341 0.00445 0.11582 0.21453
10.00000 0.00384 0.07351
17.78279 0.00269
0.01000 0.09531 0.27526 0.64308 1.20052 2.23575 0.69020 0.35720
0.10000 0.09531 0.27526 0.63585 1.18869 2.21944 0.68974 0.35714
0.17783 0.09532 0.27527 0.61958 1.16190 2.18344 0.68878 0.35702

0.31623 0.09529 0.26262 0.56187 1.07175 2.06448 0.68569 0.35664
0.45000 0.08823 0.20312 0.44711 0.90951 1.86072 0.68111 0.35599
0.50000 0.04765 0.13762 0.35801 0.79902 1.73178 0.67908 0.35574

0.56234 0.00375 0.06277 0.25374 0.66678 1.57496 0.67619 0.35538
0.75000 0.00280 0.11430 0.44675 1.27398 0.66548 0.35393
1.00000 0.03648 0.27540 0.98782 0.64691 0.35141
1.33352 0.00291 0.14531 0.70822 0.61538 0.34697
1.77828 0.05968 0.45016 0.56353 0.33924
3.16228 0.00123 0.09673 0.36965 0.30346
5.62341 0.00375 0.10830 0.21382
10.00000 0.00390 0.07200

17.78279 0.00272
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converged for each result. To validate this numerical approach, we compared the numer-
ical evaluations with the asymptotic solutions given by equations (40) and (45) for the case
ofc, = 1.0, = 1, x9 = 0.5, 79 = 10, and at the point x = 0.1. Early in time, at t = 0.01,
the small T approximations give W, = 0.00995, and ¥ = 0.00005, while our computed
results are W = 0.00994 and ¥ = 0.00005. They are in excellent agreement for this small
7. Even at a modest value of t = 0.1, equation (45) predicts W = 0.095 and V, = 0.005
whereas the numerical results are W = 0.09531 and ¥ = 0.00468. They are still in good
agreement if the accuracy of the calculation (accurate up to the fourth digit after the
decimal point) and the errors in the asymptotic solutions (in t°) are considered. For large
time, at T = 100, the asymptotic expression gives W, = 0.35494 which differs from the
numerical result W = 0.35714 by 0.62%. The agreement between W, and W becomes
better and better as we increase the value of r. For example, at t = 316.23, the difference
between the two reduces to 0.16%. Clearly, the numerical results match the asymptotic
solutions where they are appropriate and thus validate the asymptotic approximations
and the numerical scheme for the double integrals at least to some extent.

Table 2. Material energy density, V(x,1), for the case with e=1, ¢, =1, 19 = 10, xo = 0.5. The upper
section is diffusion solution and the lower section is transport solution

x\t 0.10000 0.31623 1.00000 3.16228 10.0000 31.6228 100.000

0.01000 0.00466 0.03816 0.21859 0.75342 1.75359 0.67926 0.35554
0.10000 0.00464 0.03768 0.21565 0.74557 1.74218 0.67885 0.35548
0.17783 0.00458 0.03658 0.20913 0.72837 1.71726 0.67796 0.35536

0.31623 0.00424 0.03253 0.18765 0.67348 1.63837 0.67517 0.35497
0.45000 0.00315 0.02476 0.15298 0.58978 1.51991 0.67100 0.35438
0.50000 0.00234 0.02042 0.13590 0.55041 1.46494 0.66907 0.35411
0.56234 0.00137 0.01515 0.11468 0.50052 1.39405 0.66640 0.35374
0.75000 0.00023 0.00580 0.06746 0.37270 1.19584 0.65656 0.35235
1.00000 0.00139 0.03173 0.24661 0.96571 0.63947 0.34988
1.33352 0.00015 0.01063 0.13729 0.71412 0.61022 0.34555
1.77828 0.00210 0.05918 0.46369 0.56166 0.33797
3.16228 0.00281 0.09834 0.37513 0.30294
5.62341 0.00306 0.11060 0.21452
10.00000 0.00334 0.07269
17.78279 0.00258

0.01000 0.00468 0.04093 0.27126 0.94670 2.11186 0.70499 0.35914
0.10000 0.00468 0.04093 0.26839 0.93712 2.09585 0.70452 0.35908
0.17783 0.00468 0.04093 0.26261 0.91525 2.06052 0.70348 0.35895
0.31623 0.00468 0.04032 0.23978 0.84082 1.94365 0.70020 0.35854
0.45000 0.00455 0.03314 0.18826 0.70286 1.74291 0.69532 0.35793
0.50000 0.00234 0.02046 0.14187 0.60492 1.61536 0.69308 0.35766
0.56234 0.00005 0.00635 0.08838 0.48843 1.46027 0.68994 0.35728

0.75000 0.00005 0.03014 0.30656 1.16591 0.67850 0.35581
1.00000 0.00625 0.17519 0.88992 0.65868 0.35326
1.33352 0.00017 0.08352 0.62521 0.62507 0.34875
1.77828 0.02935 0.38688 0.57003 0.34086
3.16228 0.00025 0.07642 0.36727 0.30517
5.62341 0.00253 0.10312 0.21377
10.00000 0.00342 0.07122

17.78279 0.00261
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Two cases were chosen to be calculated: a purely absorbing medium (¢, = 1.0) and one
where half the opacity is from scattering (¢, = 0.5). Other parameters, specifying the
media and the sources for the two cases, are £ = 1, xg = 0.5, and tp = 10. For each case, W
and V were computed at different (x, 1) points and the results are tabulated in Tables 14,
respectively. Most of the tabulated points are equally spaced logarithmically in time and
space. A few space points are added to resolve the spatial structure of the radiation
source. For all the numbers in the tables, there are at least four digits of accuracy. Most
tabulated points required only a few minutes of computation time. However, some points,
especially those near the front of the wave propagation, had bad sign cancellation and
required a large number integrand evaluations and equivalently a much longer computa-
tion time to converge. All the 216 transport solutions in the tables were calculated on a low-
end desk-top workstation (Macintosh 7100) and took roughly 100 hours of computing.

In addition to the transport benchmark results, we also list in Tables 1-4 the bench-
mark results of the classic diffusion approximation to the same problem under consid-
cration. The diffusion benchmark was generated exactly following the procedure

Table 3. Radiation energy density, W(x,1), for the case withe=1, ¢, = 0.5, 7p = 10, xy = 0.5. The
upper section is diffusion solution and the lower section is transport solution

X\t 0.10000 0.31623 1.00000 3.16228 10.0000 31.6228 100.000
0.01000 0.09624 0.25861 0.55843 1.02657 1.89725 0.66231 0.35317
0.10000 0.09544 0.25480 0.55147 1.01724 1.88569 0.66192 0.35311

0.17783 0.09339 0.24629 0.53618 0.99683 1.86044 0.66107 0.35299
0.31623 0.08415 0.21763 0.48708 0.93197 1.78051 0.65840 0.35261
0.45000 0.06222 0.16989 0.41139 0.83380 1.66052 0.65441 0.35203
0.50000 0.04879 0.14590 0.37546 0.78793 1.60483 0.65257 0.35176
0.56234 0.03256 0.11638 0.33032 0.72942 1.53294 0.65002 0.35139
0.75000 0.00781 0.05532 0.22027 0.57428 1.33105 0.64063 0.35002
1.00000 0.00066 0.01749 0.12237 0.41099 1.09447 0.62432 0.34758

1.33352 0.00274 0.05100 0.25563 0.83191 0.59646 0.34330
1.77828 0.01332 0.12888 0.56382 0.55030 0.33582
3.16228 0.00005 0.01031 0.14284 0.37344 0.30122
5.62341 0.00002 0.00703 0.11874 0.21397
10.00000 0.00490 0.07380
17.78279 0.00293

0.01000 0.09757 0.29363 0.72799 1.28138 2.26474 0.68703 0.35675
0.10000 0.09757 0.29365 0.71888 1.26929 2.24858 0.68656 0.35668
0.17783 0.09758 0.29364 0.69974 1.24193 2.21291 0.68556 0.35654
0.31623 0.09756 0.28024 0.63203 1.15018 2.09496 0.68235 0.35618
0.45000 0.09033 0.21573 0.50315 0.98599 1.89259 0.67761 0.35552
0.50000 0.04878 0.14681 0.40796 0.87477 1.76426 0.67550 0.35527
0.56234 0.00383 0.06783 0.29612 0.74142 1.60822 0.67252 0.35491

0.75000 0.00292 0.13756 0.51563 1.30947 0.66146 0.35346
1.00000 0.04396 0.33319 1.02559 0.64239 0.35092
1.33352 0.00324 0.18673 0.74721 0.61024 0.34646
1.77828 0.08229 0.48739 0.55789 0.33868
3.16228 0.00160 0.11641 0.36631 0.30281
5.6234] 0.00554 0.11177 0.21323
10.00000 0.00491 0.07236

17.78279 0.00296
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described in a previous work (Su and Olson, 1996), with the Marshak boundary condition
replaced with a reflective boundary condition. Omitting the details, we simply give the
diffusion solutions for the radiation and material energy densities for this problem to be

1 1
Wy(x, t) :E(;./O dnsin (Bxg) cos (Bx) {

1

+
canll +&(1 = 1)

E (e—vr‘ —

Va(x, 1) = Wa(x, 1) — 7—11;6/(; dn sin (Bxg) cos (Bx) {

B*n

3 (e—canzr’

_ e—canzr)

(46)

e—yr‘ —e Yt efcanzr‘ + e‘(‘ar}zr}

can[l +&(1 - n?)]

(47)

Table 4. Material energy density, V(x, 1), for the case withe = 1, ¢, = 0.5, 79 = 10, xp = 0.5. The

upper section is diffusion solution and the lower section is transport solution

x\t 0.10000 0.31623 1.00000 3.16228 10.0000 31.6228 100.000
0.01000 0.00241 0.02100 0.14040 0.61433 1.66211 0.69022 0.35698
0.10000 0.00240 0.02074 0.13852 0.60802 1.65110 0.68977 0.35692
0.17783 0.00236 0.02013 0.13435 0.59419 1.62705 0.68879 0.35680
0.31623 0.00219 0.01789 0.12066 0.54998 1.55086 0.68571 0.35640
0.45000 0.00163 0.01362 0.09865 0.48236 1.43632 0.68113 0.35581
0.50000 0.00121 0.01126 0.08783 0.45047 1.38311 0.67901 0.35553
0.56234 0.00071 0.00837 0.07438 0.41007 1.31458 0.67608 0.35515
0.75000 0.00012 0.00323 0.04425 0.30691 1.12417 0.66530 0.35373
1.00000 0.00078 0.02114 0.20529 0.90356 0.64666 0.35121
1.33352 0.00723 0.11666 0.66890 0.61500 0.34679
1.77828 0.00147 0.05214 0.43608 0.56305 0.33906
3.16228 0.00287 0.09748 0.36959 0.30339
5.62341 0.00381 0.10867 0.21390

10.00000 0.00385 0.07215

17.78279 0.00270
0.01000 0.00242 0.02255 0.17609 0.77654 2.00183 0.71860 0.36067
0.10000 0.00242 0.02253 0.17420 0.76878 1.98657 0.71805 0.36065
0.17783 0.00242 0.02256 0.17035 0.75108 1.95286 0.71687 0.36047
0.31623 0.00242 0.02223 0.15520 0.69082 1.84104 0.71312 0.36005
0.45000 0.00235 0.01826 0.12164 0.57895 1.64778 0.70755 0.35945
0.50000 0.00121 0.01128 0.09194 0.49902 1.52383 0.70499 0.35917
0.56234 0.00003 0.00350 0.05765 0.40399 1.37351 0.70144 0.35876
0.75000 0.00003 0.01954 0.25610 1.09216 0.68851 0.35727
1.00000 0.00390 0.14829 0.83248 0.66637 0.35465
1.33352 0.00009 0.07161 0.58640 0.62937 0.35004
1.77828 0.02519 0.36629 0.57001 0.34200
3.16228 0.00018 0.07658 0.36066 0.30553
5.62341 0.00290 0.10181 0.21308

10.00000 0.00385 0.07077

17.78279 0.00273
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where

ﬁ=n\/3c3[e+(l—_1;2')], y=ca[]+g(—l—172)}, " =max [0, (r — 1))

These diffusion solutions are much easier to be evaluated numerically than the transport
solutions. The reason for giving the diffusion results is to show the difference between the
transport solution and the diffusion solution, which is the lowest order approximation to
the transport solution. Any reasonable code (either S, or P,) should predict results
between the two solutions.

In order to visualize the numerical results and the difference between the transport
solution and the diffusion one, Figs 1 and 2 show the evolution of the radiation and
material energy densities, respectively, for the purely absorbing case. The radiation energy
density is shown as a linear plot in order to emphasize the behavior near the symmetry
plane. Clearly the difference between transport and diffusion theories is significant when
the source is on. Especially near r = 10 and x = 0, diffusion theory predicts results about
20% lower than the correct ones, that of transport theory. At large times, with no internal
driving source, the radiation field relaxes to the equilibrium diffusion solution. Figure 2
shows the material energy density on a logarithmic scale so that one can see the
advancement of the wave front. As one would expect, the diffusion solution allows
radiation to propagate too quickly. Energy gets out ahead of the distance allowed by light
travel time considerations. Late in time, the two solutions converge.

CONCLUSION

In this paper we considered the non-equilibrium radiative transfer in an infinite,
homogeneous, and isotropically scattering medium, with an internal radiation source. The
analytical solution to this problem was constructed by using the Laplace transform with
respect to the temporal variable and the Fourier transform with respect to the spatial
variable. This approach is able to treat the integration over angular variable exactly. The
source considered here is isotropic and uniformly distributed in a finite space during a
finite period of time, but the method also applies to other types of sources and even to
anisotropically scattering cases. For the radiation and material energy contents, very
simple expressions, in elementary functions, were obtained. It is found that these energy
contents are independent of the angular and spatial distribution of the source. For the
radiation and material energy fields in the medium, which are essential to validate
numerical solution algorithms used in codes, the transport solutions, as functions of space
and time, were given in the form of double integrals. These solutions were evaluated
numerically and compared with the diffusion benchmark results.

It should be emphasized that the purpose of this work is to provide a complete transport
benchmark for non-equilibrium radiative transfer. The problem we considered is math-
ematically simpler than that considered by Ganapol and Pomraning (1983). However, the
two problems have the same usefulness and serve the same practical purpose, i.e. to confirm
quantitatively the numerical schemes employed in codes. The essential difference between
the two problems, when used to validate codes, is only the type of boundary condition.
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The Marshak wave problem considered by Ganapol and Pomraning (1983) has a isotropic
flux-type boundary condition whereas our problem is equivalent to a half-space one with
a reflective boundary condition. We hope the data given here will be useful in code
development for time-dependent radiation transport. We finally comment that the interior
solution of the half-space Marshak wave problem could be obtained in a similar way by
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Fig. 1. The diffusion and transport solutions for the radiation energy density are shown as functions
of position at different times, as labeled.
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Fig. 2. The diffusion and transport solutions for the material energy density are shown as functions
of position at different times, as labeled.
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applying the transform method described in this work, since the exiting solution to the
problem is known (Ganapol and Pomraning, 1983). This represents possible work for the
future.
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